首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1134篇
  免费   121篇
  2021年   12篇
  2016年   13篇
  2015年   18篇
  2014年   40篇
  2013年   37篇
  2012年   51篇
  2011年   56篇
  2010年   40篇
  2009年   31篇
  2008年   47篇
  2007年   55篇
  2006年   35篇
  2005年   38篇
  2004年   44篇
  2003年   24篇
  2002年   28篇
  2001年   27篇
  2000年   24篇
  1999年   23篇
  1998年   14篇
  1997年   14篇
  1996年   9篇
  1995年   16篇
  1994年   16篇
  1993年   16篇
  1992年   19篇
  1991年   22篇
  1990年   25篇
  1989年   28篇
  1988年   19篇
  1987年   22篇
  1986年   18篇
  1985年   20篇
  1984年   30篇
  1983年   19篇
  1982年   20篇
  1981年   19篇
  1980年   9篇
  1979年   16篇
  1978年   24篇
  1977年   20篇
  1976年   9篇
  1975年   12篇
  1974年   14篇
  1972年   12篇
  1971年   11篇
  1969年   10篇
  1968年   9篇
  1966年   9篇
  1965年   11篇
排序方式: 共有1255条查询结果,搜索用时 31 毫秒
41.
Introduction. Cheilolejeunea morganii Bever. & Glenny, a new species of Cheilolejeunea from a lowland forest habitat in eastern Taranaki in the North Island of New Zealand, is described and illustrated.

Methods. DNA sequences were extracted from recently collected material at two locations and compared with those for species in a published phylogeny of the genus to establish the position of C. morganii. Photographic images were obtained of key features of the species for the preparation of illustrations for publication.

Key results. Cheilolejeunea morganii does not match any species described for New Zealand or Australia. The sequencing results indicate its position in the phylogeny is close to Section Paroicae. A key to the New Zealand species of Cheilolejeunea is provided.

Conclusions. In the Australasian flora, C. morganii is distinguished from other species by its combination of monoicy, pycnolejeuneoid gynoecial innovations, lobule length less than 50% lobe length and a multicellular second lobule tooth with 3–4 cells uniseriate. A case is presented for the recognition of the species as a New Zealand endemic.  相似文献   

42.
Recognition of genetic structure of populations and the ability to identify vulnerable populations is useful for the formation of conservation management strategies for plants. Eucalyptus grandis is a tall forest tree that has a major area of occurrence in subtropical eastern Australia, with smaller populations located in the east coast tropics. Many widespread forest species exhibit population differentiation that corresponds to geographic regions. However, Eucalyptus grandis appears to be an exception based on isozyme and morphological data. This is intriguing given a large discontinuity between northern populations and those in the southern part of the species range. In this study, the distribution of a maternally inherited chloroplast locus was examined because it was more likely to reveal genetic structure due to the slower evolution of the chloroplast genome and limited dispersal of seed in eucalypts. As expected, the G ST for chloroplast DNA was higher than that for nuclear DNA but indicated low population differentiation for a forest tree species. Phylogeographic analysis indicated that the 15 populations grouped into three broad geographical regions; however, overall population structure was weak suggesting that the large geographical disjunction in the distribution of E. grandis may be relatively recent. A paradigm for conservation management of E. grandis based on chloroplast DNA haplotype distribution would take into account the low differentiation among populations.  相似文献   
43.
44.
45.
80% of arable land in Africa has low soil fertility and suffers from physical soil problems. Additionally, significant amounts of nutrients are lost every year due to unsustainable soil management practices. This is partially the result of insufficient use of soil management knowledge. To help bridge the soil information gap in Africa, the Africa Soil Information Service (AfSIS) project was established in 2008. Over the period 2008–2014, the AfSIS project compiled two point data sets: the Africa Soil Profiles (legacy) database and the AfSIS Sentinel Site database. These data sets contain over 28 thousand sampling locations and represent the most comprehensive soil sample data sets of the African continent to date. Utilizing these point data sets in combination with a large number of covariates, we have generated a series of spatial predictions of soil properties relevant to the agricultural management—organic carbon, pH, sand, silt and clay fractions, bulk density, cation-exchange capacity, total nitrogen, exchangeable acidity, Al content and exchangeable bases (Ca, K, Mg, Na). We specifically investigate differences between two predictive approaches: random forests and linear regression. Results of 5-fold cross-validation demonstrate that the random forests algorithm consistently outperforms the linear regression algorithm, with average decreases of 15–75% in Root Mean Squared Error (RMSE) across soil properties and depths. Fitting and running random forests models takes an order of magnitude more time and the modelling success is sensitive to artifacts in the input data, but as long as quality-controlled point data are provided, an increase in soil mapping accuracy can be expected. Results also indicate that globally predicted soil classes (USDA Soil Taxonomy, especially Alfisols and Mollisols) help improve continental scale soil property mapping, and are among the most important predictors. This indicates a promising potential for transferring pedological knowledge from data rich countries to countries with limited soil data.  相似文献   
46.
47.
Future human well‐being under climate change depends on the ongoing delivery of food, fibre and wood from the land‐based primary sector. The ability to deliver these provisioning services depends on soil‐based ecosystem services (e.g. carbon, nutrient and water cycling and storage), yet we lack an in‐depth understanding of the likely response of soil‐based ecosystem services to climate change. We review the current knowledge on this topic for temperate ecosystems, focusing on mechanisms that are likely to underpin differences in climate change responses between four primary sector systems: cropping, intensive grazing, extensive grazing and plantation forestry. We then illustrate how our findings can be applied to assess service delivery under climate change in a specific region, using New Zealand as an example system. Differences in the climate change responses of carbon and nutrient‐related services between systems will largely be driven by whether they are reliant on externally added or internally cycled nutrients, the extent to which plant communities could influence responses, and variation in vulnerability to erosion. The ability of soils to regulate water under climate change will mostly be driven by changes in rainfall, but can be influenced by different primary sector systems' vulnerability to soil water repellency and differences in evapotranspiration rates. These changes in regulating services resulted in different potentials for increased biomass production across systems, with intensively managed systems being the most likely to benefit from climate change. Quantitative prediction of net effects of climate change on soil ecosystem services remains a challenge, in part due to knowledge gaps, but also due to the complex interactions between different aspects of climate change. Despite this challenge, it is critical to gain the information required to make such predictions as robust as possible given the fundamental role of soils in supporting human well‐being.  相似文献   
48.
Campylobacter jejuni, a major food‐borne intestinal pathogen, preferentially utilizes a few specific amino acids and some organic acids such as pyruvate and l ‐ and d ‐lactate as carbon sources, which may be important for growth in the avian and mammalian gut. Here, we identify the enzymatic basis for C. jejuni growth on l ‐lactate. Despite the presence of an annotated gene for a fermentative lactate dehydrogenase (cj1167), no evidence for lactate excretion could be obtained in C. jejuni NCTC 11168, and inactivation of the cj1167 gene did not affect growth on lactate as carbon source. Instead, l ‐lactate utilization in C. jejuni NCTC 11168 was found to proceed via two novel NAD‐independent l ‐LDHs; a non‐flavin iron–sulfur containing three subunit membrane‐associated enzyme (Cj0075c‐73c), and a flavin and iron–sulfur containing membrane‐associated oxidoreductase (Cj1585c). Both enzymes contribute to growth on l ‐lactate, as single mutants in each system grew as well as wild‐type on this substrate, while a cj0075c cj1585c double mutant showed no l ‐lactate oxidase activity and did not utilize or grow on l ‐lactate; d ‐lactate‐dependent growth was unaffected. Orthologues of Cj0075c‐73c (LldEFG/LutABC) and Cj1585c (Dld‐II) were recently shown to represent two novel families of l ‐ and d ‐lactate oxidases; this is the first report of a bacterium where both enzymes are involved in l ‐lactate utilization only. The cj0075c‐73c genes are located directly downstream of a putative lactate transporter gene (cj0076c, lctP), which was also shown to be specific for l ‐lactate. The avian and mammalian gut environment contains dense populations of obligate anaerobes that excrete lactate; our data indicate that C. jejuni is well equipped to use l ‐ and d ‐lactate as both electron‐donor and carbon source.  相似文献   
49.

Background  

A recent study on expression and function of the ortholog of the Drosophila collier (col) gene in various arthropods including insects, crustaceans and chelicerates suggested a de novo function of col in the development of the appendage-less intercalary segment of insects. However, this assumption was made on the background of the now widely-accepted Pancrustacea hypothesis that hexapods represent an in-group of the crustaceans. It was therefore assumed that the expression of col in myriapods would reflect the ancestral state like in crustaceans and chelicerates, i.e. absence from the premandibular/intercalary segment and hence no function in its formation.  相似文献   
50.
Aim  It is well established that many groups of plants and animals have undergone long-distance dispersal, but the extent to which this continues beyond initial colonization is largely unknown. To provide further insight into the frequency of gene flow mediated by long-distance dispersal, we investigated the origins of the fern Asplenium hookerianum on the Chatham Islands, and present a review of the contribution of molecular data to elucidating the origins of this archipelago's biota.
Location  Chatham Islands and New Zealand. A. hookerianum is scarce on the Chatham Islands but common in New Zealand, some 800 km to the west.
Methods  We compared chloroplast trnL–trnF DNA sequence data from Chatham Islands' A. hookerianum with extensive phylogeographic data for this genetically variable species in mainland New Zealand.
Results  Our sequencing revealed the presence of two haplotypes in Chatham Islands' A. hookerianum . These haplotypes differed by four mutational events and were each more closely related to haplotypes found in New Zealand than to each other.
Main conclusions  Despite the rarity of A. hookerianum on the Chatham Islands, its populations there appear to derive from at least two long-distance dispersal events from New Zealand, these possibly originating from different areas. We suggest that long-distance transoceanic dispersal, and the gene flow it can mediate, may be more common than is generally appreciated.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号